
bool boolean value; true or false

s8, s16,
s32, s64

signed integers with 8, 16, 32 or 64 bit length

u8, u16,
u32, u64

unsigned integers with 8, 16, 32 or 64 bit length

float32,
float64

floating-point numbers with 32 or 64 bit length

char single Unicode scalar character

string Unicode string with a finite length

Primitive Types
These are the core types for a wasm module. Most languages will
implement all of these types.

WASI Component Types
Command
A component defined as a Command has a main function (or in
wasi:cli, a run function) and terminates when the function returns.
Reactor
This component is more like a library. It exposes an API once it is
instantiated and remains live, allowing functions on the component
to be called from the host or other components.

record a collection of types accessible via named keys
enum a type that can equal one of a set of values
variant a type that be one of many predefined types
flags a collection of flags that can be toggled

independantly from each other
func a function type
resource a new abstract resource type. See below

Named Types
Types listed here all require an identifier. They provide more structure
and flexibility than primitive types.

tuple<...> a finite sequence of values of different types
list<T> a sequence of values of the type T
option<T> mark a type as optional, value will be type T

or no value
result<T,E> represents value or error, where the output

will be one or the other but not both

Container Types
These types are used to create collections of other types. They can
contain any of the primitive or named types.

include used to include worlds into another
use will include types from an interface in a world
import used to import an entire interface into a world
export used to export an interface/func from a world

Language Keywords
These keywords are used to describe some sort of action or property
within a component.

constructor method that returns a handle of the
containing resource type

static mark a resource func as scoped to resource
self the borrowed handle to the resource
borrow mark a handle as a temporary loan from

caller to callee
owned a handle representing unique ownership of a

resource

Resource Keywords
Keywords here relate to resources. Resources are used to describe
variables that should not be copied by value.

WASI Worlds to know
These are some useful worlds defined by the WASI proposals that you
might find useful in writing your own components.

wasi:cli/command

wasi:keyvalue/keyvalue
wasi:blob-store/blob-store
wasi:messaging/messaging
wasi:nn/ml
wasi:http/proxy
wasi:cloud-core/cloud-core

Comments
Sometimes you just need to leave a note.

/// single line comment

/* comment block */

File Structure

Package
A single package can and often is represented by multiple files. A
common pattern is types.wit, world.wit, and my-interface-name.wit.
The package must include a namespace and an identifier, and can
optionally include a version number which should follow semantic
versioning.

Interface
A collection of types and functions scoped to a package which
can be used within a world. Interfaces are the only place that a
type can be defined. Packages can contain multiple interfaces.

World
Akin to a complete description of a component. A world is a
collection of imports and exports that allow the component to
interact with the host as well as other components.

The WIT CheatShEet

The future of disTributed
applications, ToDAY Cosmonic wasmCloud

From napkin sketch to running apps anywhere, at scale, in minutes,
Cosmonic is the lightweight, low-boilerplate platform that radically
simplifies application development. Build your apps with composable
Wasm components that run in any datacenter, cloud or edge.

From napkin sketch to running apps anywhere, at scale, in minutes,
Cosmonic is the lightweight, low-boilerplate platform that radically
simplifies application development. Build your apps with composable
Wasm components that run in any datacenter, cloud or edge.

WhaT DOeS WIT LOOK LIKE?

package acme:space-station@0.1.0;

interface types {
 type astronaut-id = u64;

 variant pods {
 none,
 list<u32>,
 }

 flags locations {
 bridge,
 nacelle,
 jefferies-tubes,
 }

 enum level {
 captain,
 commander,
 cadet,
 }

 record astronaut {
 id: astronaut-id,
 name: string,
 ship-access: locations,
 manager: option<astronaut>,
 level: level,
 start-date: u32,
 end-date: option<u32>,
 addresses: pods,
 }

 record inventory {
 name: string,
 cost: u32,
 description: string,
 stock: u32,
 tags: list<string>,
 }
}

interface directory {
 use types.{astronaut-id, astronaut};

 get-astronaut: func(id: astronaut-id) -> result<astronaut, e32>;
 update-astronaut: func(id: astronaut-id, changes: droid) -> result<astronaut, e32>;
}

world astronauts {
 import wasi:logging;

 export directory.{get-astronaut, update-astronaut};
}

world reporting {
 include astronauts;
 use types.{inventory};

 export get-inventory: func(item: option<string>) -> list<inventory>;
}

The future of disTributed
applications, ToDAY Cosmonic wasmCloud

type aliases are great for
descriptive declarations

variants can be used to indicate
that a value can be one of many types

Identifiers are restricted to ASCII
kebab-case but can be preceded
by a single % if the identifier would
otherwise be a wit keyword. For
example, interface is a keyword,
but %interface is an identifier

package must have a namespace
and name—version is optional

a package is a collection
of interfaces and worlds

an interface is a collection
of functions and types
scoped to the package

worlds describe the imports
and exports for a component imports can be called from

the component using them

exports are functions that can be called by

the host runtime (or another component)

flags are like a collection of bools
that can be toggled individually

enums are a single type for a
small set of specific values

id is referenced from
the type alias above!

option<...> is useful for making
values not required

lists can include any type. Indicate
contents as many types using variants

record properties can be any valid
type, including other records

worlds can import and
export entire interfaces, use
types from interfaces and
can include other worlds

result is great for returning

error and/or success state

